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Abstract The one-dimensional problem of a generalized elasto-thermodiffusive
solid half-space, whose surface is maintained traction free but subjected to the action
of thermal or mass concentration loads, has been investigated. The model, composed
of basic governing equations and boundary conditions, has been solved by using the
Laplace transform technique. As we know that the ‘second sound’ effects are short
lived, thus, short-time approximations of solutions for dilatation, chemical potential,
and stress functions have been obtained. The short-time solutions for each considered
function consist of three waves, namely, elasto-diffusive, mass-diffusive, and thermo-
diffusive waves traveling with distinct speeds. The discontinuities at the wave fronts
of various considered physical quantities have also been discussed. To obtain the dila-
tation, chemical potential, and stress in the physical domain due to instantaneous,
continuous, and periodic loads, the transformed solutions of these functions have
been inverted by employing a numerical technique. Finally, the dilatation, chemical
potential, and stress functions have been computed numerically for copper and brass
materials. The computer-simulated results so obtained have been presented graphically
to illustrate the analytical developments.
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1 Introduction

Biot [1] developed the coupled theory of thermoelasticity to eliminate the paradox
inherent in the classical uncoupled theory that elastic changes have no effect on the
temperature. The heat equations for both theories, however, are of the diffusion type,
predicting an infinite speed of propagation. To account for the finite speed of wave
propagation, Lord and Shulman [2] developed the theory of generalized thermoelastic-
ity with one relaxation time included in the classical Fourier law of heat conduction.
The heat equation associated with this theory is of the wave type which ensures a
finite speed of wave propagation of heat and elastic waves. The governing equation of
motion and constitutive relations remains the same as those for coupled and uncou-
pled theories of thermoelasticity. Nowacki [3–6] developed the theory of thermoelastic
diffusion by using the coupled thermoelastic model. Dudziak and Kowalski [7] and
Olesiak and Pyryev [8], respectively, discussed the theory of thermodiffusion and the
influence of cross effects arising due to coupling in the fields of temperature, mass
diffusion, and strain in an elastic cylinder. Danilovskaya [9,10] treated the problems
of thermal shock on the surface of a half-space for the first time and obtained its
analytical solution in dynamic uncoupled thermoelasticity. Nayfeh [11] considered
the transient response of thermoelastic waves in a half-space and observed a strong
coupling effect between thermal and dilatation motion as well as the presence of a
thermal damping term which makes a short-time solution meaningful. Song et al. [12]
studied transient waves caused by a line heat source moving with a uniform velocity
inside a homogeneous isotropic thermoelastic half-space under the Green–Lindsay
(G–L) model of generalized thermoelasticity.

Sherief et al. [13] derived the basic governing equations of motion, heat conduc-
tion, and mass diffusion for a generalized elasto-thermodiffusive solid. Sherief and
Helamy [14] investigated the problem of a half-space whose surface is rigidly fixed
and subjected to the action of thermal shock in the context of the generalized theory of
thermoelasticity. Sherief and Saleh [15] studied the half-space problem in the context
of generalized thermoelastic diffusion when the surface of the half-space is assumed
traction free and subjected to a time-dependent thermal shock. Sharma [16] discussed
the propagation of plane harmonic waves in generalized thermoelastic diffusive heat
conducting solids. Sharma et al. [17] have also studied the propagation of surface
waves in a generalized elasto-thermodiffusive half-space. Assuming that the distur-
bance is harmonically time dependent, Sharma et al. [18,19] have obtained a general
solution to the field equations of homogeneous isotropic, generalized thermoelastic
diffusion with two relaxation times using Fourier transforms.

In this article, an attempt has been made to study the propagation of a disturbance
in an elasto-thermodiffusive solid half-space when thermal and mass concentration
loads are acting on its boundary. Analytical expressions of various physical quantities
are obtained at small times. The Laplace transform has been inverted numerically
to obtain the considered field functions in the physical domain, in the general case.
The analytical developments have also been illustrated numerically and are presented
graphically.
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2 Basic Equations

The basic governing equations and constitutive relations for the generalized ther-
modiffusive interactions in a homogeneous isotropic, elastic solid are [13] outlined
below:

1. Strain–displacement relations

ei j = 1

2

(
ui, j + u j,i

) ; i, j = 1, 2, 3 (1)

2. Stress–strain–temperature–concentration relations

σi j = λekkδi j + 2µei j − β1T δi j − β2Cδi j, (2)

ρT0S = ρCeT + β1T0ekk + aT0C (3)

P = −β2ekk + bC − aT ; i, j, k = 1, 2, 3 (4)

These equations are also known as constitutive relations.
3. Equations of motion

µui, j j + (λ + µ)u j,i j − β1T,i − β2C,i + ρFi = ρüi ; i, j = 1, 2, 3 (5)

4. Equation of heat conduction

K T,i i − ρCe(Ṫ + t0T̈ ) = β1T0(ė + t0ë)+ aT0(Ċ + t0C̈); i = 1, 2, 3 (6)

5. Equation of mass diffusion

C,i i − 1

Db
(Ċ + t1C̈) = β2

b
e,i i + a

b
T,i i ; i = 1, 2, 3 (7)

where β1 = (3λ + 2µ)αT , β2 = (3λ + 2µ)αC, e is the dilatation; λ and µ are Lamé
parameters; αT is the coefficient of linear thermal expansion, αC is the coefficient of
linear diffusion expansion, ρ is the density; Ce is the specific heat at constant strain,
a is the thermo-diffusive constant, b is the diffusive constant, K is the thermal con-
ductivity, P is the chemical potential per unit mass, T is the absolute temperature,
C is the concentration, T0 is the uniform reference temperature assumed to obey the
inequality |(T − T0)/T0| � 1, t0 and t1 are thermal relaxation time parameters, and
ui ’s (i = 1, 2, 3) are the displacement components. Here, the comma notation is used
for space derivatives and superposed dots denote time differentiation. We assume that
material parameters satisfy the inequalities,

K > 0, D > 0, λ > 0, ρ > 0, Ce > 0, µ > 0, T0 > 0, t0 > 0, t1 > 0

(8)
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3 Formulation of the Problem

We consider a homogeneous isotropic, thermodiffusive, elastic solid half-space at a
uniform temperature T0 and initial concentration C0 in the undisturbed state. We take
the origin of the Cartesian coordinate system O − xyz at any point on the surface
of the solid and choose the x-axis in such a way that the half-space is represented
by x ≥ 0. From symmetry considerations, we assume that all physical quantities are
functions of x and t only. The upper surface of the half-space (x ≥ 0) is subjected
to a time-dependent thermal or mass concentration load. All the field functions are
assumed to be bounded and vanish as x → ∞. Equations 5–7 of linear generalized
elasto-thermodiffusion governing the displacement u(x, t), temperature T (x, t), and
concentration C(x, t), in the absence of body forces and heat sources, become

(λ + 2µ)u,xx − β1T,x − β2C,x = ρ �̈u
K T,xx − ρCe(Ṫ + t0T̈ ) = β1T0( �̇u,x + �̈u,x ) + aT0(Ċ + t0C̈)

C,xx − 1

Db
(Ċ + t1C̈) = β2

b
u,xxx + a

b
T,xx (9)

Equations 2–4 in the instant case provide us with

σxx = (λ + 2µ)u,x − β1T − β2C

P = −β2u,x + bC − aT (10)

T = T0S

Ce
− β1T0

ρCe
u,x + aT0C

ρCe

where �u(x, t) = (u, 0, 0), T (x, t), and C(x, t) are, respectively, the displacement
vector, temperature deviation, and concentration change of the material. To facilitate
the solution, we define the following quantities:

x ′ = ω∗x

cL
, u′

i = ρω∗cLui

β1T0
, T ′ = T

T0
, C ′ = C

C0
, t ′0 = ω∗t0, t ′1 = ω∗t1,

t ′ = ω∗t, c2
s = µ

ρ
, ω∗ = Ce(λ + 2µ)

K
, εT = T0β

2
1

ρCe(λ + 2µ)
, δ2 = c2

s

c2
L

,

ā = aC0

ρCe
, β̄ = β2C0

β1T0
, b̄ = aT0

bC0
, ω̄b = c2

L

ω∗ Db
, εC = β1β2T0

C0b(λ + 2µ)
,

c2
L = (λ + 2µ)

ρ
, σ ′

xx = σxx

β1T0
, P ′ = P

bC0
, S′ = S

Ce
(11)

Upon introducing the quantities in Eq. 11 in Eqs. 9 and 10, we obtain

�u,xx − T,x − β̄C,x = �̈u (12)

T,xx − (Ṫ + t0T̈ ) − εT ( �̇u,x + t0 �̈u,xx ) − ā(Ċ + t0C̈) = 0 (13)

C,xx − ω̄b(Ċ + t1C̈) − εCu,xxx − b̄T,xx = 0 (14)
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σxx = u,x − T − β̄C

P = −εCu,x + C − b̄T (15)

T = S + εT u,x + āC

where the primes have been suppressed for convenience.

3.1 Initial, Regularity, and Boundary Conditions

The half-space is assumed to be undeformed and at rest as well as at a uniform initial
temperature T0. This leads to the following initial and regularity conditions,

u(x, 0) = 0 = u̇(x, 0), T (x, 0) = 0 = Ṫ (x, 0), C(x, 0) = 0 = Ċ(x, 0) for all x

u(x, t), T (x, t), C(x, t) → 0 as x → ∞, for all t. (16)

The following two sets of boundary conditions on the surface x = 0 of the half-space
are assumed to be satisfied.

3.1.1 Thermal Loads

The boundary x = 0 of the half-space is assumed to be stress free, iso-concentrated,
and subjected to a time varying temperature input (TI) or temperature gradient (TG).
This leads to

σxx = 0, T = θ0 f (t), C = 0, for TI

or σxx = 0, T,x = −θ0 f (t), C = 0, for TG (17)

3.1.2 Mass Concentration Loads

The surface x = 0 of the half-space is assumed to be stress free, isothermal, and
subjected to a time varying concentration change (CI) or concentration gradient (CG).
This implies that

σxx = 0, T = 0, C = C0 f (t), for CI

or σxx = 0, T = 0, C,x = −C0 f (t), for CG (18)

Here, f (t) is a well-behaved function of time.

4 Formal Solution of the Problem

Applying the Laplace transform defined by

ḡ(x, p) =
∞∫

0

g(x, t)e−pt dt (19)
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with respect to time to Eqs. 12–14, we obtain

(D2 − p2)ū − DT̄ − β̄ DC̄ = 0

(D2 − τ0 p2)T̄ − εT τ0 p2 Dū − āτ0 p2C̄ = 0 (20)

(D2 − ω̄b p2τ1)C̄ − εC D3ū − b̄D2T̄ = 0

where τ0 = t0 + p−1 and τ1 = t1 + p−1.
Solving the system of Eq. 20 and using the regularity conditions, Eq. 16, we get

ū(x, p) =
3∑

i=1

Bi e
−λi px

T̄ =
3∑

i=1

p

λi
S̄i Bi e

−λi px (21)

C̄ =
3∑

i=1

pλi W̄i Bi e
−λi px

where

W̄i = b̄
{
1 − λ2

i (1 + εa)
}

λ2
i (1 + β̄b̄) − ω̄bτ1

, S̄i =
{

1 − λ2
i (1 + β̄W̄i )

}
, i = 1, 2, 3 (22)

Here, the quantities λ2
i (i = 1, 2, 3) are the roots of the equation,

λ6 − p2 A∗λ4 + p4 B∗λ2 − p6C∗ = 0 (23)

where

εa = εC

b̄

A∗ = 1 + ω̄bτ1 + τ0
{
(1 + āb̄) (1 + εa) + (1 + β̄b̄)(εT − εa)

}

1 − β̄εC

B∗ = τ0(1 + āb̄) + ω̄bτ1{1 + t0(1 + εT)}
1 − β̄εC

(24)

C∗ = ω̄bτ1τ0

1 − β̄εC

Upon applying the Laplace transform to Eq. 15 and using the solution, Eq. 21, the
expressions for stress and chemical potential can be obtained as

σ̂xx = −p
3∑

i=1

Bi e−pλi x

λi
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P̄ = ω̄bτ1 p
3∑

i=1

W̄i Bi

λi
e−pλi x (25)

The deformation given by e = ∂u
∂x , on applying the Laplace transform with the help

of the solution, Eq. 21, leads to

ē = −p
3∑

i=1

Biλi e
−λi px (26)

4.1 Thermal Loads

Upon applying an integral transform to the boundary conditions, Eq. 17, and using
the formal solution, Eq. 21, we obtain a system of three coupled equations in three
unknowns Bi (i = 1, 2, 3) as follows:

λ2λ3 B1 + λ1λ3 B2 + λ1λ2 B3 = 0

λ2λ3

(
λ1 − hT

p

)
S̄1 B1 + λ1λ3

(
λ2 − hT

p

)
S̄2 B2 + λ1λ2

(
λ3 − hT

p

)
S̄3 B3

= −θ0 f (p)

p2 λ1λ2λ3 (27)

W̄1λ1 B1 + W̄2λ2 B2 + W̄3λ3 B3 = 0

Solving the above system of equations, Eq. 27, we obtain

Bi = θ0 f̄ (p)Di

pD
, i = 1, 2, 3 (28)

where

D =
{

pDTG, for TG
DTI, for TI

D1 = λ1

(
W̄2λ

2
2 − W̄3λ

2
3

)
, D2 = λ2

(
W̄3λ

2
3 − W̄1λ

2
1

)
, (29)

D3 = λ3

(
W̄1λ

2
1 − W̄2λ

2
2

)

Here,

DTG =
[

S̄1λ1

(
W̄2λ

2
2 − W̄3λ

2
3

)
− S̄2λ2

(
W̄3λ

2
3 − W̄1λ

2
1

)
+ S̄3λ3

(
W̄1λ

2
1 − W̄2λ

2
2

)]

DTI =
[

S̄1

(
W̄3λ

2
3 − W̄2λ

2
2

)
− S̄2

(
W̄3λ

2
3 − W̄1λ

2
1

)
+ S̄3

(
W̄2λ

2
2 − W̄1λ

2
1

)]

and f̄ (p) = ∫∞
0 f (t)e−pt dt is the Laplace transform of function f (t). The use of

expressions for Bi (i = 1, 2, 3) given by Eq. 28 in Eqs. 25 and 26 leads to solutions of
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stress, chemical potential, and dilatation functions due to thermal loads in the trans-
formed domain.

4.2 Mass Concentration Loads

Upon applying the Laplace transform to the boundary condition, Eq. 18, and using
the formal solution, Eq. 21, we again obtain a system of three equations in unknowns
Bi (i = 1, 2, 3), the solution of which provides

Bi = C0 f̄ (p)D∗
i

pD∗ , i = 1, 2, 3 (30)

�∗ =
{

pD∗
CG, for CG

D∗
CI, for CI

(31)

D∗
1 = λ1

(
S̄2 − S̄3

)
, D∗

2 = λ2
(
S̄3 − S̄1

)
, D∗

3 = λ1
(
S̄1 − S̄2

)

D∗
CG = S̄1

(
W̄2λ2 − W̄3λ3

) + S̄2
(
W̄3λ3 − W̄1λ1

) + S̄3
(
W̄1λ1 − W̄3λ3

)

D∗
CI =

[
S̄1

(
W̄3λ

2
3 − W̄2λ

2
2

)
− S̄2

(
W̄3λ

2
3 − W̄1λ

2
1

)
+ S̄3

(
W̄2λ

2
2 − W̄1λ

2
1

)]

Through the use of Eq. 30 in Eqs. 25 and 26, we obtain the stress, chemical potential,
and dilatation functions due to a mass concentration load in the transformed domain.

We take f (t) =
⎧
⎨

⎩

δ(t), for implusive load
H(t), for continuous load
cos ωt, for periodic load

(32)

Upon applying the Laplace transform to Eq. 32, we obtain

f̄ (p) =

⎧
⎪⎨

⎪⎩

1, for impulsive load
1
p , for continuous load

p
p2+ω2 , for periodic load

(33)

Thus, the dilatation, stress, and chemical potential in the transformed domain can be
obtained from Eqs. 25 and 26 with the help of Eq. 28. We obtain

⎡

⎣
ē(x, p)

σ̄xx (x, p)

P̄(x, p)

⎤

⎦ = −pθ0 f̄ (p)

3∑

i=1

⎡

⎣
λi

1/λi

−ω̄bτ1W̄i/λi

⎤

⎦ Di

D
e−λi px (34)

where D, Di (= 1, 2, 3) are given by Eq. 29 and f̄ (p) is defined in Eq. 33.
The corresponding expressions for these functions for the case of mass concentra-

tion loads can be written from Eq. 31 by substituting C0, D∗, and D∗
i (i = 1, 2, 3) in

place of θ0, D, and Di (i = 1, 2, 3), respectively.

123



Int J Thermophys (2009) 30:1697–1723 1705

4.3 Thermoelastic Half-Space

In the absence of mass diffusion (a = 0 = β2 ⇒ εC = 0 = b̄), we have

W̄i =
{

1, i = 3
0, i = 1, 2

, S̄i =
{

S∗
i , i = 1, 2

0, i = 3
(35)

so that Eq. 24 lead to

λ∗2
1 + λ∗2

2 = 1 + τ0(1 + εT ), λ∗2
1 λ∗2

2 = τ0, λ∗2
3 = ω̄bτ1 (36)

In this case, the dilatation and temperature fields in the transformed domain due to the
action of a TG are given by

ē(x, p) = − θ0 f̄ (p)

p
(
S̄∗

2λ∗2
2 − S̄∗

1λ∗2
1

)
(
λ∗2

1 exp
(−λ∗

1 px
) − λ∗2

2 exp
(−λ∗

2 px
))

(37)

σxx (x, p) = − θ0 f̄ (p)λ∗2
3

p
(
S̄∗

2λ∗2
2 − S̄∗

1λ∗2
1

)
(
exp

(−λ∗
1 px

) − exp
(−λ∗

2 px
))

(38)

where S̄∗
i = 1 − λ∗2

i . In the case of TI, the above transformed functions become

ē(x, p) = − θ0 f̄ (p)
(
S̄∗

2 − S̄∗
1

)
{
λ∗2

1 exp
(−λ∗

1 px
) − λ∗2

2 exp
(−λ∗

2 px
)}

(39)

σxx (x, p) = −θ0 f̄ (p)λ∗2
3(

S̄∗
2 − S̄∗

1

)
{
exp

(−λ∗
1 px

) − exp
(−λ∗

2 px
)}

(40)

5 Small-Time Approximations

Because of the damping term in Eq. 9, the dependence of roots λi on p is compli-
cated and, hence, the inversion of the Laplace transform is quite difficult because
the isolation of p is not possible. These difficulties, however, are reduced if we use
some approximation or numerical methods. Because the ‘second sound’ effects are of
short duration, we take p large. The roots λi (i = 1, 2, 3) of Eq. 23 may be expanded
binomially and after retaining only the positive sign, we obtain

λi = 1

Vi
+ φi

p
+ O

(
1

p2

)
, i = 1, 2, 3 (41)

∑ 1

V 2
1

= 1 + ω̄bt1 + t0
{(

1 + āb̄
)
(1 + εa) + (

1 + β̄b̄
)
(εT − εa)

}

1 − β̄εC

∑ 1

V 2
1 V 2

2

= t0(1 + āb̄) + ω̄bt1{1 + t0(1 + εT )}
1 − β̄εC
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∑ 1

V 2
1 V 2

2 V 2
3

= ω̄bt1t0
1 − β̄εC

(42)

φi = A∗V 4
i − B∗V 2

i + C∗

Vi {(V 2
j − V 2

i )(V 2
k − V 2

i )
, i 	= j 	= k = 1, 2, 3 (43)

A∗ = t1 + t0
2t1t0

B∗ = (1 + āb̄) + ω̄b{1 + (t1 + t0)(1 + εT)

2ω̄bt1t0
(44)

C∗ = ω̄bt0(1 + āb̄)(1 + εa)

2ω̄bt1t0

The deformation, stress, and chemical potential in the case of a TG acting on the
surface of the half-space are obtained as

ē(x, p) = −θ0

3∑

i=1

Di0 f̄ (p)

pD0Vi
e
− x

Vi
p
e−φi x (45)

σ̄xx (x, p) = −θ0

3∑

i=1

Di0Vi f̄ (p)

pD0
e
− x

Vi
p
e−φi x (46)

P̄ (x, p) = θ0

3∑

i=1

ω̄bWi0t1 Di0 f̄ (p) Vi

pD0
e
− x

Vi e−φi x (47)

where

D10 = 1

V1

(
W̄20

V 2
2

− W̄30

V 2
3

)

, D20 = 1

V2

(
W̄30

V 2
2

− W̄10

V 2
1

)

, (48)

D30 = 1

V3

(
W̄10

V 2
1

− W̄20

V 2
2

)

D0 =
∑

(i, j,k)

Wk0

V 2
k

{
1

V 2
i

− 1

V 2
j

+ β̄

(
W̄i0

V 2
i

− W̄ j0

V 2
j

)}

W̄i0 =
(
V 2

i − 1 − εa
)

b̄

1 + β̄b̄ − ω̄bt1V 2
i

(49)

Here, (i, j, k) = (1, 2, 3), (2, 3, 1), and (3, 1, 2). Inverting the Laplace transform of
Eqs. 45–47, the solution of the considered functions in the physical domain is obtained
as

e(x, t) = −θ0

3∑

i=1

Di0

D0Vi
exp{−φi x}Fi (x, t) (50.1)
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σxx (x, t) = −θ0

3∑

i=1

Di0Vi

D0
exp{−φi x}Fi (x, t) (50.2)

P(x, t) = θ0

3∑

i=1

Di0W̄i0ω̄bt1Vi

D0
exp{−φi x}Fi (x, t) (50.3)

where

Fi (x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

H(t − x
Vi

), for impulsive load(
t − x

Vi

)
H
(

t − x
Vi

)
, for continuous load

sin ω
(

t− x
Vi

)

ω
, for periodic load

Here, H(t − x
Vi

) represents Heaviside unit step functions. In the case of TI, the above
functions are obtained as

ē (x, t) = −θ0

3∑

i=1

Di0

D0Vi
exp{−φi x}Gi (x, t) (50.4)

σxx (x, t) = −θ0

3∑

i=1

Di0Vi

D0
exp{−φi x}Gi (x, t) (50.5)

P (x, t) = −θ0

3∑

i=1

Di0ω̄bW̄iot1Vi

D0
exp{−φi x}Gi (x, t) (50.6)

where

Gi (x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ
(

t − x
Vi

)
for impact load

H
(

t − x
Vi

)
, for continuous load

cos ω
(

t − x
Vi

)
for periodic load

Similar expressions can be obtained for the mass concentration load by employing the
above approach.

5.1 Approximation for Thermoelastic Half-Space

For large p, Eq. 36 with the help of expression,

λ∗
i = 1

V ∗
i

+ φ∗
i

p
+ O

(
1

p2

)
, i = 1, 2
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provide us with

V ∗−2
1 + V ∗−2

2 = 1 + t0(1 + εT ), V ∗−2
1 V ∗−2

2 = t0, V ∗−2
3 = ω̄bt1 (51)

φ∗
i = V ∗

1 V ∗
2 N1

2
(
V ∗2

1 − V ∗2
2

) , φ∗
2 = V ∗

1 V ∗
2 N2

V ∗2
1 − V ∗2

2

(52)

N1 = V ∗
1

(
V ∗

1 + V ∗
2

) − V ∗
2 (1 + εT) ,

N2 = V ∗
2

(
V ∗

1 + V ∗
2

) − V ∗
1 (1 + εT) (53)

Equation 51 implies that

1

V ∗2
1

,
1

V ∗2
2

= 1 + t0(1 + εT) ± √
M

2
(54)

where M =
√

{1 − t0(1 + εT )}2 + 4εT t0 = 1
V ∗2

1
− 1

V ∗2
2

> 0.

This clearly shows that M > 0 and, hence, V ∗
1 < V ∗

2 . Thus, V ∗
1 corresponds to

the slowest wave and V ∗
2 refers to the fastest wave. Furthermore, in the absence of

thermo-mechanical coupling (εT = 0), Eq. 54 leads to

V ∗
2 = 1√

t0
, V ∗

1 = 1, V ∗
3 = 1√

�bt1
(55)

Here, V ∗
1 corresponds to an elasto-diffusive wave and V ∗

2 refers to a thermo-diffusive
wave. For most of the materials, t0 is quite small, and therefore V ∗

1 < V ∗
2 and, thus, the

elasto-diffusive wave follows the thermo-diffusive wave. Moreover, the thermo-diffu-
sive waves have a finite, although quite large, velocity of propagation. In the absence
of relaxation times (t1 = t0 = 0), Eq. 55 provides us with

V ∗
2 → ∞, V ∗

3 → ∞, V ∗
1 = 1

This implies that in the absence of thermal relaxation times, the elasto-diffusive wave
becomes the longitudinal elastic wave and travels with a velocity c2

L = (λ+2µ)
ρ

as in
elasto-kinetics, and the other two waves have an infinite velocity of propagation being
diffusive in character. This corresponds to the case of conventional coupled thermo-
elasticity which predict an infinite speed of heat propagation and mass diffusion.

The dilatation and stress in the transformed domain given by Eqs. 39 and 40 in the
case of a small time approximation become

ē(x, p) = −θ0 f̄ (p)

pV ′

(
V ∗

1 V ∗3
2 e

− x
V ∗

1
p
e−φ∗

1 x + V ∗3
1 V ∗

2 e
− x

V ∗
2

p
e−φ∗

2 x
)

(56)

σxx (x, p) = −θ0 f̄ (p) V ∗3
1 V ∗3

2

pV ′

(
e
− x

V ∗
1

p
e−φ∗

1 x + e
− x

V ∗
2

p
e−φ∗

2 x
)

(57)
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Inverting the Laplace transform in the above expressions, for the case of a TG, we get

e (x, t) = − θ0

V ′
2∑

i=1
j 	=i

V ∗
i V ∗2

j exp{−φ∗
i x}F∗

i (x, t)

σxx (x, t) = −θ0V ∗3
1 V ∗3

2

V ′
2∑

i=1

exp{−φ∗
i x}F∗

i (x, t)

(58.1)

where V ′ = (
V ∗

2 − V ∗
1

) {
V ∗2

1 + V ∗2
2 + V ∗2

1 V ∗2
2 + 1

}

F∗
i (x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H
(

t − x
V ∗

i

)
, for impulsive load

(
t − x

V ∗
i

)
H
(

t − x
V ∗

i

)
, for continuous load

sin ω

(
t− x

V ∗
i

)

ω
, for periodic load

Similarly, in the case of TI, the above expressions become

e (x, t) = − θ0

V ∗2
1 − V ∗2

2

2∑

i=1

V ∗2
i exp (φi x)G∗

i (x, t)

σxx (x, t) = − θ0

V ∗2
1 − V ∗2

2

2∑

i=1

exp (φi x)G∗
i (x, t)

(58.2)

where

G∗
i (x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

δ
(

t − x
V ∗

i

)
, for impulsive load

H
(

t − x
V ∗

i

)
, for continuous load

cos ω
(

t − x
V ∗

i

)
, for periodic load

Clearly, these solutions are contributed by elastic and thermal waves.

6 Discussion of Results at Wave Fronts

The short-time solutions obtained above indicate that each of the functions e, P ,
and σxx is made up of three waves, namely, elasto-diffusive, thermo-diffusive, and
mass-diffusive traveling waves with finite velocities V1,, V2, and V3, respectively. The
presence of Heaviside functions H(t − x

Vi
) indicates that x = Vi t, i = 1, 2, 3 are the

probable discontinuous points of e, P , and σxx . The jumps at the wave fronts due to
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a TG acting at the surface of half-space are given by

[
e+ − e−]

Vi t = −θ0

⎧
⎨

⎩

Di0
D0Vi

exp (−φi Vi t) , for impulsive load
for continuous and periodic

0, loads

(59.1)

[
σ+

xx − σ−
xx

]
Vi t = −θ0

⎧
⎨

⎩

Di0
D0Vi

exp (−φi Vi t) , for impulsive load
for continuous and

0, periodic loads
(59.2)

[
P+ − P−]

Vi t = θ0

⎧
⎨

⎩

Di0W̄i0ω̄bt1
D0

exp (−φi Vi t) , for impulsive load
for continuous and

0, periodic loads
(59.3)

In case of a TI, the jumps in various considered functions are obtained as

[
e+ − e−]

Vi t = −θ0

⎧
⎨

⎩

∞, for impulsive load
Di0

D0Vi
exp (−φi Vi t) , for continuous and periodic

loads

(60.1)

[
σ+

xx − σ−
xx

]
Vi t = −θ0

⎧
⎨

⎩

∞, for impulsive load
Di0

D0Vi
exp (−φi Vi t) , for continuous and periodic

loads

(60.2)

[
P+ − P−]

Vi t = θ0

⎧
⎨

⎩

∞, for impulsive load
Di0

D0Vi
exp (−φi Vi t) , for continuous and periodic

loads

(60.3)

The disturbance in the medium consists of three coupled waves, one following the
other. For most of the materials, the faster wave is the elastic wave and the thermal
wave is slower than the elastic wave but faster than the mass diffusive wave. The above
expressions show that the dilatation, stress, and chemical potential are continuous at
each wave front for continuous and periodic loads in the case of a TG input acting at
the boundary of the half-space. However, these functions are discontinuous at wave
fronts in the case of an impulsive load. This means that a discontinuous load does
generate discontinuities in the dilatation which is not physically realistic.

The jumps at the wave fronts due to a TG and a TI applied on the surface of a
thermoelastic (in the absence of mass diffusion) half-space are, respectively, given
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by

(
e+ − e−)

x=V ∗
i t =

{
0, for continuous and periodic loads

θ0V ∗2
i(

S̄∗
1 λ∗2

1 −S̄∗
2 λ∗2

2

)e−φ∗
i V ∗

i t , for impulsive load

(
σ+

xx − σ−
xx

)
x=V ∗

i t =
{

0, for impulsive and periodic loads
θ0(

S̄∗
2 λ∗2

2 −S̄∗
1 λ∗2

1

)e−φ∗
i V ∗

i t , for continuous load (61.1)

(
e+ − e−)

x=V ∗
i t =

{
0, for impulsive load

θ0V ∗2
i

V ∗2
2 −V ∗2

1
e−φ∗

i V ∗
i t , for continuous and periodic loads

(
σ+

xx − σ−
xx

)
x=V ∗

i t =
{

0, for continuous load
θ0

V ∗2
2 −V ∗2

1
e−φ∗

i V ∗
i t , for impulsive and periodic loads (61.2)

Clearly, the jumps at the wave fronts in these functions are exponentially decaying
with time.

7 Laplace Transform Inversion and Physical Solution

In this section, we will find a solution in the physical domain at all times by employing
a numerical technique of the Laplace transform inversion. To obtain the solution of
the problem in the physical domain, we must invert the Laplace transform in Eqs. 34
and 37–40. The Laplace transform of each function in these equations is given by

ḡ(x, p) =
∞∫

0

g(x, t)e−pt dt (62)

The inversion formula for the Laplace transform is

g (t) = 1

2π i

γ+i∞∫

γ−i∞
ḡ (p) ept dp (63)

where γ is an arbitrary real number greater than all real parts of all the singularities
of ḡ(p). The above integral can be solved by setting p = γ + iy; we get

g (t) = eγ t

2π

+∞∫

−∞
ḡ(γ + iy)ei t ydy (64)

Let h(t) = g(t)e−γ t while expanding the function g(t)e−γ t in a Fourier series in the
interval [0, 2l], we obtain the approximation formula as

g (t) = g∞(t) + ED
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where

g∞(t) = C0

2
+

∞∑

k=1

CK , for 0 ≤ t ≤ 2l (65)

Here,

Ck = exp (γ t)

l
Re

[
ḡ

(
γ + ikπ

l

)
exp

(
ikπ t

l

)]

and ED is the discretization error that can be made arbitrarily small by choosing γ

sufficiently large.
As the infinite series in Eq. 63 can be summed to a finite number N of terms, the

approximate value of g(t) becomes

gN (t) = C0

2
+

N∑

k=1

CK , for all 0 ≤ t ≤ 2l (66)

Using this formula to evaluate g(t), a new error called the truncation error is intro-
duced that must be added to the discretization error to produce the total approxima-
tion error. The Korrector method is used to reduce the discretization error; while the
ε-algorithmic method is used to reduce the truncation error and, hence, to accelerate
the convergence. The Korrector method is used to evaluate the function g(t),

g(t) = g∞(t) − exp(−2γ l)g∞(2l + t) + E ′
D

where
∣∣E ′

D

∣∣ < |ED.|, the approximate value of g(t) becomes

gNK (t) = gN (t) − exp (−2γ l) g′
Ṅ
(2l + 1) (67)

where N is an integer such that N ′ < N .
We shall now describe the ε-algorithm method used to accelerate the convergence

of the series. Let N be an odd natural number and let sm = ∑N
K=1 CK be the sum of

partial sequences of Eq. 65. We define the ε sequence by

ε0,m = 0, ε1,m = sm, εn+1,m = εn−1,m+1 − 1

εn,m+1 − εn,m
, n, m = 1, 2, 3

It can be shown that the sequence of partial sums ε1,1, ε3,1, . . . , εN+1 converges to
g(t) + ED − C0

2 faster than the sequence of partial sums (sm, m = 1, 2, 3, . . .).
The actual procedure used to invert the Laplace transform consists of Eq. 66 together

with the ε-algorithm. The values of γ and l are chosen according to the criteria outlined
in Honig and Hirdes [20].
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Table 1 Physical data for brass (70 % Cu + 30 % Zn) and Cu materials

Coefficient Unit Brass Copper References

λ N · m−2 7.69 × 1010 7.76 × 1010 Callister, Jr. [22]
µ N · m−2 3.61 × 1010 3.86 × 1010 Callister, Jr. [22]
ρ kg · m−3 8.522 × 103 8.954 × 103 Thomas [23]
Ce J · kg−1 · K−1 385 383.1 Thomas [23]
K W · m−1 · K−1 1.11 × 102 386 Thomas [23]
αT K−1 2 × 10−6 1.78 × 10−5 Thomas [23]
D m2 · s−1 0.24 × 10−4 0.85 × 10−8 Callister, Jr. [22]
αC K−1 1.8 × 10−5 1.98 × 10−4 Callister, Jr. [22]
a m · S−1 0.1521 × 102 1.2 × 104 Sherief and Saleh [15]
b m · S−1 0.02 × 104 9 × 106 Sherief and Saleh [15]
T0 K 293 293 Thomas [23]

8 Numerical Results and Discussion

To illustrate the analytical results obtained in the pervious section, we present some
numerical simulation results. The materials chosen for the purpose of numerical calcu-
lations are brass (70 % Cu + 30 % Zn) and copper (Cu) whose physical data are given
in Table 1. The dimensional values of thermal relaxation time parameters t0 have been
estimated from Eq. 2.5 of Chandrasekharaiah [21] and that of t1 is taken as proportional
to t0. Consequently, the dimensionless values of thermal relaxation times have been
taken as t0 = 0.5 and t1 = 0.3 for computation purposes. The dimensionless dilata-
tion, chemical potential, and stress functions have been computed for brass and Cu
materials for two values of time (t = 0.5, 0.75) at different locations (x) from Eq. 34.
However, the equivalent results in dimensional form with respect to these considered
field functions can be obtained by using quantities in Eq. 11. The computer-simulated
results have been plotted graphically for the cases of TI and concentration input (CI)
applications on the boundary of the half-space in Figs. 1 –15. The profiles with a ball
represent Cu and those without a ball refer to brass materials.

8.1 Temperature Input

Figure 1 shows the variation of the dilatation (e) with distance (x) due to instantaneous
application of the TI acting on the surface of the half-space. It is observed that at time
t = 0.50, the magnitude of dilatation for the case of brass increases for 0 ≤ x ≤ 0.5
in the vicinity of the load and a sharp decrease is observed for 0.5 ≤ x ≤ 1, before
it starts behaving in a sinusoidal manner in the range 1 ≤ x ≤ 2.5. The profile of
this quantity is observed to become asymptotically close to zero at x ≥ 4. At time
t = 0.75, the magnitude of variations of this quantity increases monotonically for
0 ≤ x ≤ 0.50, decreases for 0.5 ≤ x ≤ 1, and then follows a sinusoidal pattern in the
range 1 ≤ x ≤ 2.5 before asymptotically tending to zero for x ≥ 4 after observing a
steady increase for the case of the brass material. It is observed that the corresponding
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Fig. 1 Variation of dilatation due to instantaneous TI

profiles of dilatation for the copper material at both values of time (t = 0.50 and
t = 0.75) almost follow closely those of brass and hence exhibit a similar behavior.

Figure 2 presents the variations of the chemical potential distribution with distance
due to instantaneous application of a TI acting on the surface of the copper and brass
half-spaces at t = 0.50 and t = 0.75. The chemical potential distribution for the
case of the brass material at t = 0.50 is found to increase sharply in the domain
0 ≤ x ≤ 0.50, decreases for 0.50 ≤ x ≤ 1, and oscillates in the range 1 ≤ x ≤ 4
before it starts decreasing to become asymptotically close to zero at x ≥ 4. At time
t = 0.75, the trend of variations of the profile of this quantity is found to be similar
to that at t = 0.50 except there are some changes in its magnitude for the case of the
brass material. The trend of variations of the chemical potential in Cu also follows an
almost similar pattern to that of the brass material with the exception that its magnitude
is less than that in the case of the brass material.

Figure 3 shows variations of the stress distribution with distance (x) due to instanta-
neous application of a TI on the half-space. It is found that at t = 0.50, the magnitude
of stress increases sharply in the range 0 ≤ x ≤ 0.50, decreases monotonically for
0.50 ≤ x ≤ 3.5, and becomes steady before ultimately tending to zero at x ≥ 4. At
t = 0.75, the stress magnitude increases in the range 0 ≤ x ≤ 1.5, becomes almost
uniform in the domain 1.5 ≤ x ≤ 2, and decreases for 3 ≤ x ≤ 3.5, before it becomes
steady and asymptotically close to zero at x ≥ 4. The trend of variations of the stress
magnitude in the Cu material at t = 0.50 is found to follow an almost similar pattern
as observed in the case of brass at the time with the exception of its distinguished
trend in the range of 1.5 ≤ x ≤ 3. It is also observed from the graph that at time
t = 0.75, the profile for the copper material shows an increasing trend in the region
0 ≤ x ≤ 0.50, remains uniform for 0.50 ≤ x ≤ 3, and decreases monotonically in the
domain x ≥ 3.5 before it becomes steady and stable for x ≥ 4. It is noticed that the
stress remains tensile for both brass and Cu materials due to instantaneous application
of TI at both considered values of time.
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Fig. 2 Variation of chemical potential due to instantaneous TI
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Fig. 3 Distribution of stress due to instantaneous TI

Figure 4 presents the variations of the dilatation due to continuous application of a
TI on the boundary of the half-space. It is observed that at t = 0.50, the magnitude of
the dilatation in brass decreases sharply in the domain 0 ≤ x ≤ 0.50, remains uniform
for 0.50 ≤ x ≤ 2, and increases monotonically in the range 2 ≤ x ≤ 4 to become
steady and asymptotically close to zero for x ≥ 8. At time t = 0.75, the profile of this
quantity follows a decreasing trend in the range 0 ≤ x ≤ 1, which increases sharply
for 1 ≤ x ≤ 2, and shows a dipping behavior at x ≥ 3, before it asymptotically tends
to zero for x ≥ 8 after observing a slight increase in the domain 3 ≤ x ≤ 4. For the
case of a Cu material, the profile of this quantity follows almost a similar trend of
variation as that of the brass material at t = 0.50 and t = 0.75 with the exception of
its distinct variation in the range 0.50 ≤ x ≤ 1.5 at t = 0.50.
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Fig. 4 Variation of dilatation due to continuous TI

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 2 4 6 8Distance (x) 

C
he

m
ic

al
 p

ot
en

tia
l (

P)
   

  

t=0.50

t=0.75

t=0.50

t=0.75
Wthout ball-Brass
With ball- Copper

Fig. 5 Distributions chemical potential due to continuous TI

Figure 5 represents the distribution of the chemical potential due to a continuously
applied TI on the boundary of the considered half-space. It is revealed that the trend
of variations of this quantity at t = 0.50 for the brass material shows a sharp increase
in the range 0 ≤ x ≤ 2, with a slight dipping behavior in the domain 2 ≤ x ≤ 4,
before it increases to become asymptotically close to zero at x ≥ 8. At t = 0.75,
the trend of variations of the chemical potential remains almost the same, although
having less magnitude as compared to that at t = 0.50. The variation of the profiles
of the chemical potential for Cu material is found to increase monotonically in the
range 0 ≤ x ≤ 6.5 and shows a slightly decreasing trend for 6.5 ≤ x ≤ 7 to become
asymptotically close to zero at x ≥ 8 at the considered values of time.

Figure 6 shows the distribution of the stress due to continuous application of a TI
on the surface of the half-space with distance (x). For the brass material, the trend
of variations of the stress magnitude at t = 0.50 is found to increase in the range
0.5 ≤ x ≤ 1.5, exhibits dipping behavior in the domain 1.5 ≤ x ≤ 2, and again starts
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Fig. 6 Distribution of stress due to continuous TI

increasing for 2 ≤ x ≤ 3, before it decreases monotonically to become asymptotically
close to zero at x ≥ 8. At t = 0.75, the profile of this quantity follows an increasing
trend in the range 0 ≤ x ≤ 2, which decreases for 2 ≤ x ≤ 3 and again observes
a slight increase in the domain 3 ≤ x ≤ 4, before it decreases monotonically in the
range 4 ≤ x ≤ 6 to become approximately close to zero for x ≥ 7. The profiles
of variations of the stress magnitude for the Cu material at t = 0.50 and t = 0.75
increase sharply in the range 0 ≤ x ≤ 1.5 with a slight dip in the region 1.5 ≤ x ≤ 3
and then decrease monotonically in the domain 3 ≤ x ≤ 7 to become asymptotically
close to zero for x ≥ 7. The stress is observed to be tensile in both materials at the
considered values of time due to a continuous TI application at the surface.

A comparison of Figs. 1–6 shows that all the considered field quantities observe
maximum magnitudes of variations in their distribution in the vicinity of the thermal
load which ultimately dies out with increasing distance and time. This convergence
of results shows the existence of wave fronts. The magnitudes of computed quantities
are found to be quite high in the case of an instantaneous source as compared to that
for a continuous one. However, the profiles for the latter case travel longer distances
than those of the former one which is consistent with the nature and character of the
load in addition to the physical facts.

8.2 Concentration Input

Figure 7 presents the variations of the dilatation due to instantaneous application of a
CI at the surface of the solid. It is observed that due to this type of loading, the mag-
nitude of variations of the dilatation in both brass and Cu materials is approximately
half of that due to a TI given in Fig. 1 at the considered times. At time t = 0.50, the
dilatation profiles of brass and Cu materials follow a sinusoidal pattern before becom-
ing asymptotically close to zero at x ≥ 3 with the exceptions of magnitude variations
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Fig. 8 Variation of chemical potential due to instantaneous mass CI

in certain ranges of the distance. The profiles of the dilatation in both materials at
t = 0.75 also follow almost similar trends of variations except that the magnitude of
this quantity falls drastically in comparison to that at t = 0.50 in addition to some
phase shifts. The decreasing magnitude of this quantity with the passage of time is
quite consistent with the physical facts.

Figure 8 represents the variations of the chemical potential due to instantaneous
application of a CI at the surface of brass and Cu material half-spaces. Figure 8 reveals
that the profiles of the chemical potential at t = 0.50 and t = 0.75 follow almost
similar trends with increasing distance from the point of application of the load but
with fluctuating behavior, becoming asymptotically close to zero for x ≥ 2. However,
the profiles corresponding to the Cu material at t = 0.75 are observed to be phase
shifted after x ≥ 0.50 in relation to that of the brass material at t = 0.50.
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Fig. 9 Distribution of stress due to instantaneous mass CI

Figure 9 shows the variations of the stress due to instantaneous application of a CI.
At t = 0.50, the stress distribution profile of the brass material increases in the domain
0 ≤ x ≤ 0.50 and decreases sharply for 0.50 ≤ x ≤ 1.5, before it starts increasing
in the domain 1.5 ≤ x ≤ 2 to become asymptotically close to zero for x ≥ 3. At
t = 0.75, the profiles of this quantity follow a decreasing trend in the range 0 ≤ x ≤ 1,
which increases in the domain 1 ≤ x ≤ 2 and again decreases for 2 ≤ x ≤ 2.5, before
it starts increasing steadily to become asymptotically close to zero for x ≥ 3. For a
Cu material, the stress distribution profiles seem to follow a similar trend of variations
with different magnitudes at t = 0.50 and t = 0.75.

Figures 10–12, respectively, show the variations of the dilatation, stress, and chem-
ical potential due to continuous application of a CI on the surface of the half-space.
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-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 1 2 3 4 5 6 7

Distance (x)

St
re

ss

t=0.50

t=0.75

t=0.50

t=0.75

Without ball-Brass
With ball- Copper

Fig. 12 Variation of stress due to continuous mass CI

It is observed that in brass and Cu materials, the distribution profiles of dilatation
observed is quite opposite in trend in contrast to that of a continuous TI at t = 0.50
and t = 0.75. All these curves become asymptotically close to zero for x ≥ 8 in both
materials.

The comparison of Figs. 7–12 revealed that the application of a CI on the surface of
the Cu or brass material resulted in similar types of effects as that produced by the TI
in these materials. It is noticed that the stress which is tensile initially for the case of
instantaneous loading becomes compressive with the passage of time. However, the
stress remains compressive for the case of continuous loading under the considered
conditions. The convergence of various profiles in these figures at certain distances
again shows the existence of wave fronts and, hence, demonstrates the fact of a finite
velocity, although large heat propagation in nonclassical thermoelasticity.
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Fig. 14 Variation of chemical potential with the frequency of periodic TI and CI loadings

Figures 13–15 present variations of the dilatation, chemical potential, and stress
due to the application of a periodic TI and a CI with the load frequency on log-linear
scales. Here, solid curves correspond to brass, and dotted curves refer to Cu materials.
The profiles with and without balls represent CI and TI, respectively. All the consid-
ered quantities are observed to vanish in a converging fashion after the periodic load
frequency ω ≥ 100. The maximum variation (resonance condition) is observed to
have occurred at ω = 10 for the case of dilatation, stress, and chemical potential. To
sum up, it is clear from the above discussion that all the considered functions vanish
at certain finite values of distance, thereby showing the existence of wave fronts in the
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Fig. 15 Variation of stress with the frequency of periodic TI and CI loadings

case of nonclassical theory of thermoelasticity in contrast to that of classical theory
where the solutions are predominantly diffusive in character. This also ascertains the
fact that heat propagates with a finite, although quite large, velocity.

9 Conclusions

The effect of diffusion plays an important role in processing and characterization to
improve material properties. The measured stress provides unique information lead-
ing to fundamental understanding of a deformation mechanism in advanced structural
materials. Results indicate that the variations in magnitudes of dilatation, chemical
potential, and stress are found to be a maximum near the point of application of the
load. It is also observed that all the considered physical quantities vanish at a certain
finite value of distance from the point of application of the load. This shows the exis-
tence of wave fronts in nonclassical thermoelasticity in contrast to those in classical
thermoelasticity.

While the application of a TI produces a tensile effect on the stress, a CI leads to
a compressive stress in both materials except for some initial instant of time in the
case of instantaneous loading. The short-time solutions in the case of a TG show that
the dilatation, stress, and chemical potential are continuous at the wave fronts due
to the application of continuous and periodic loads; however, these are found to be
discontinuous at the wave fronts in the case of an impulsive load in both brass and
Cu materials. Moreover, in the case of a TI, all the considered functions are found
to be discontinuous at the wave fronts due to continuous and periodic loads but they
experience a Dirac delta singularity at the wave fronts for the case of an impulsive
load.

It is observed that the thermal sources produce more variation in the profiles of the
considered field functions as compared to that of mass concentration loads, because
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in solids, thermal diffusion is a faster process in comparison to mass diffusion. The
results of the instant study can be useful to understand the material properties under
the dynamic response of various loads in the context of generalized thermoelastic
diffusion.
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